Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.

Identifieur interne : 000148 ( Main/Exploration ); précédent : 000147; suivant : 000149

A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.

Auteurs : Hyunwook Koh [États-Unis] ; Martin J. Blaser [États-Unis] ; Huilin Li [États-Unis]

Source :

RBID : pubmed:28438217

Descripteurs français

English descriptors

Abstract

BACKGROUND

The role of the microbiota in human health and disease has been increasingly studied, gathering momentum through the use of high-throughput technologies. Further identification of the roles of specific microbes is necessary to better understand the mechanisms involved in diseases related to microbiome perturbations.

METHODS

Here, we introduce a new microbiome-based group association testing method, optimal microbiome-based association test (OMiAT). OMiAT is a data-driven testing method which takes an optimal test throughout different tests from the sum of powered score tests (SPU) and microbiome regression-based kernel association test (MiRKAT). We illustrate that OMiAT efficiently discovers significant association signals arising from varying microbial abundances and different relative contributions from microbial abundance and phylogenetic information. We also propose a way to apply it to fine-mapping of diverse upper-level taxa at different taxonomic ranks (e.g., phylum, class, order, family, and genus), as well as the entire microbial community, within a newly introduced microbial taxa discovery framework, microbiome comprehensive association mapping (MiCAM).

RESULTS

Our extensive simulations demonstrate that OMiAT is highly robust and powerful compared with other existing methods, while correctly controlling type I error rates. Our real data analyses also confirm that MiCAM is especially efficient for the assessment of upper-level taxa by integrating OMiAT as a group analytic method.

CONCLUSIONS

OMiAT is attractive in practice due to the high complexity of microbiome data and the unknown true nature of the state. MiCAM also provides a hierarchical association map for numerous microbial taxa and can also be used as a guideline for further investigation on the roles of discovered taxa in human health and disease.


DOI: 10.1186/s40168-017-0262-x
PubMed: 28438217
PubMed Central: PMC5402681


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.</title>
<author>
<name sortKey="Koh, Hyunwook" sort="Koh, Hyunwook" uniqKey="Koh H" first="Hyunwook" last="Koh">Hyunwook Koh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016</wicri:regionArea>
<wicri:noRegion>10016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blaser, Martin J" sort="Blaser, Martin J" uniqKey="Blaser M" first="Martin J" last="Blaser">Martin J. Blaser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine and Microbiology, New York University Langone Medical Center, New York, NY, 10010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine and Microbiology, New York University Langone Medical Center, New York, NY, 10010</wicri:regionArea>
<wicri:noRegion>10010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Huilin" sort="Li, Huilin" uniqKey="Li H" first="Huilin" last="Li">Huilin Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. huilin.li@nyumc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016</wicri:regionArea>
<wicri:noRegion>10016</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28438217</idno>
<idno type="pmid">28438217</idno>
<idno type="doi">10.1186/s40168-017-0262-x</idno>
<idno type="pmc">PMC5402681</idno>
<idno type="wicri:Area/Main/Corpus">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000140</idno>
<idno type="wicri:Area/Main/Curation">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000140</idno>
<idno type="wicri:Area/Main/Exploration">000140</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.</title>
<author>
<name sortKey="Koh, Hyunwook" sort="Koh, Hyunwook" uniqKey="Koh H" first="Hyunwook" last="Koh">Hyunwook Koh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016</wicri:regionArea>
<wicri:noRegion>10016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blaser, Martin J" sort="Blaser, Martin J" uniqKey="Blaser M" first="Martin J" last="Blaser">Martin J. Blaser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine and Microbiology, New York University Langone Medical Center, New York, NY, 10010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine and Microbiology, New York University Langone Medical Center, New York, NY, 10010</wicri:regionArea>
<wicri:noRegion>10010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Huilin" sort="Li, Huilin" uniqKey="Li H" first="Huilin" last="Li">Huilin Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. huilin.li@nyumc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016</wicri:regionArea>
<wicri:noRegion>10016</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiome</title>
<idno type="eISSN">2049-2618</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (growth & development)</term>
<term>Computational Biology (methods)</term>
<term>Humans (MeSH)</term>
<term>Metagenome (MeSH)</term>
<term>Microbial Consortia (MeSH)</term>
<term>Microbial Interactions (MeSH)</term>
<term>Microbial Viability (MeSH)</term>
<term>Microbiota (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>RNA, Ribosomal, 16S (MeSH)</term>
<term>Regression Analysis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (MeSH)</term>
<term>Algorithmes (MeSH)</term>
<term>Analyse de régression (MeSH)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (croissance et développement)</term>
<term>Bactéries (génétique)</term>
<term>Biologie informatique (méthodes)</term>
<term>Consortiums microbiens (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Interactions microbiennes (MeSH)</term>
<term>Microbiote (MeSH)</term>
<term>Métagénome (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Viabilité microbienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Humans</term>
<term>Metagenome</term>
<term>Microbial Consortia</term>
<term>Microbial Interactions</term>
<term>Microbial Viability</term>
<term>Microbiota</term>
<term>Phylogeny</term>
<term>Regression Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Algorithmes</term>
<term>Analyse de régression</term>
<term>Bactéries</term>
<term>Consortiums microbiens</term>
<term>Humains</term>
<term>Interactions microbiennes</term>
<term>Microbiote</term>
<term>Métagénome</term>
<term>Phylogenèse</term>
<term>Viabilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The role of the microbiota in human health and disease has been increasingly studied, gathering momentum through the use of high-throughput technologies. Further identification of the roles of specific microbes is necessary to better understand the mechanisms involved in diseases related to microbiome perturbations.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Here, we introduce a new microbiome-based group association testing method, optimal microbiome-based association test (OMiAT). OMiAT is a data-driven testing method which takes an optimal test throughout different tests from the sum of powered score tests (SPU) and microbiome regression-based kernel association test (MiRKAT). We illustrate that OMiAT efficiently discovers significant association signals arising from varying microbial abundances and different relative contributions from microbial abundance and phylogenetic information. We also propose a way to apply it to fine-mapping of diverse upper-level taxa at different taxonomic ranks (e.g., phylum, class, order, family, and genus), as well as the entire microbial community, within a newly introduced microbial taxa discovery framework, microbiome comprehensive association mapping (MiCAM).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Our extensive simulations demonstrate that OMiAT is highly robust and powerful compared with other existing methods, while correctly controlling type I error rates. Our real data analyses also confirm that MiCAM is especially efficient for the assessment of upper-level taxa by integrating OMiAT as a group analytic method.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>OMiAT is attractive in practice due to the high complexity of microbiome data and the unknown true nature of the state. MiCAM also provides a hierarchical association map for numerous microbial taxa and can also be used as a guideline for further investigation on the roles of discovered taxa in human health and disease.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28438217</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2049-2618</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Microbiome</Title>
<ISOAbbreviation>Microbiome</ISOAbbreviation>
</Journal>
<ArticleTitle>A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.</ArticleTitle>
<Pagination>
<MedlinePgn>45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s40168-017-0262-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">The role of the microbiota in human health and disease has been increasingly studied, gathering momentum through the use of high-throughput technologies. Further identification of the roles of specific microbes is necessary to better understand the mechanisms involved in diseases related to microbiome perturbations.</AbstractText>
<AbstractText Label="METHODS">Here, we introduce a new microbiome-based group association testing method, optimal microbiome-based association test (OMiAT). OMiAT is a data-driven testing method which takes an optimal test throughout different tests from the sum of powered score tests (SPU) and microbiome regression-based kernel association test (MiRKAT). We illustrate that OMiAT efficiently discovers significant association signals arising from varying microbial abundances and different relative contributions from microbial abundance and phylogenetic information. We also propose a way to apply it to fine-mapping of diverse upper-level taxa at different taxonomic ranks (e.g., phylum, class, order, family, and genus), as well as the entire microbial community, within a newly introduced microbial taxa discovery framework, microbiome comprehensive association mapping (MiCAM).</AbstractText>
<AbstractText Label="RESULTS">Our extensive simulations demonstrate that OMiAT is highly robust and powerful compared with other existing methods, while correctly controlling type I error rates. Our real data analyses also confirm that MiCAM is especially efficient for the assessment of upper-level taxa by integrating OMiAT as a group analytic method.</AbstractText>
<AbstractText Label="CONCLUSIONS">OMiAT is attractive in practice due to the high complexity of microbiome data and the unknown true nature of the state. MiCAM also provides a hierarchical association map for numerous microbial taxa and can also be used as a guideline for further investigation on the roles of discovered taxa in human health and disease.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koh</LastName>
<ForeName>Hyunwook</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blaser</LastName>
<ForeName>Martin J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine and Microbiology, New York University Langone Medical Center, New York, NY, 10010, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Huilin</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-8288-7068</Identifier>
<AffiliationInfo>
<Affiliation>Department of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. huilin.li@nyumc.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA016087</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK090989</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK110014</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 CA182370</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiome</MedlineTA>
<NlmUniqueID>101615147</NlmUniqueID>
<ISSNLinking>2049-2618</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054892" MajorTopicYN="Y">Metagenome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059013" MajorTopicYN="N">Microbial Consortia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056265" MajorTopicYN="N">Microbial Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Comprehensive association mapping</Keyword>
<Keyword MajorTopicYN="Y">Microbial association test</Keyword>
<Keyword MajorTopicYN="Y">Microbial group analysis</Keyword>
<Keyword MajorTopicYN="Y">Phylogenetic tree</Keyword>
<Keyword MajorTopicYN="Y">Taxonomic structure</Keyword>
<Keyword MajorTopicYN="Y">Upper-level taxa</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28438217</ArticleId>
<ArticleId IdType="doi">10.1186/s40168-017-0262-x</ArticleId>
<ArticleId IdType="pii">10.1186/s40168-017-0262-x</ArticleId>
<ArticleId IdType="pmc">PMC5402681</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2006 Dec 21;444(7122):1027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Nov;6(11):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16304596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Mar 16;148(6):1258-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Mar 6;254(5495):83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1089909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Hered. 2010;69(2):120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2015 May 7;96(5):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25957468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2001 Nov 1;125(1-2):279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11682119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Mar;17(3):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Res. 2016 Jun 24;5:1492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27508062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2016 Apr 27;8(1):48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27124954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2016 May 19;8(1):56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27198579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 13;486(7402):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Aug;197(4):1081-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24831820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Nov 1;30(21):3123-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25061070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Aug;74(15):4898-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Epidemiol. 2009 Sep;33(6):497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Oct 4;490(7418):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol Health Dis. 2015 May 29;26:27663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut. 2006 Feb;55(2):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2016 Jun 15;8(343):343ra82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27306664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2011 Sep 9;89(3):354-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21885029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Dec;10(12):1200-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Inform Exp. 2012 Feb 09;2(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jul 23;3(7):e2719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Oct;10(10):2435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27015003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Aug 15;28(16):2106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22711789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 30;488(7413):621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Jun 24;12(6):R60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Aug 14;158(4):705-721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25126780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Epidemiol. 2011 Nov;35(7):606-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Mar;73(5):1576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Oct 30;11:538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21034504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 May;19(5):576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23563705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Koh, Hyunwook" sort="Koh, Hyunwook" uniqKey="Koh H" first="Hyunwook" last="Koh">Hyunwook Koh</name>
</noRegion>
<name sortKey="Blaser, Martin J" sort="Blaser, Martin J" uniqKey="Blaser M" first="Martin J" last="Blaser">Martin J. Blaser</name>
<name sortKey="Li, Huilin" sort="Li, Huilin" uniqKey="Li H" first="Huilin" last="Li">Huilin Li</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28438217
   |texte=   A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28438217" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020